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Abstract

In 2010, the author was approached with a query from industry
concerning the application of IEC 61508-7:2010 Annex D, on
the statistical evaluation of software. We realised that Annex
D is not a helpful guide for a number of reasons. We discuss
some common assessment scenarios and their quandaries and
requirements for the application of statistical methods based on
Bernoulli/Poisson mathematics.

1 Introduction

IEC 61508-7:2010 Annex D (henceforth Annex D) gives what
it calls initial guidelines on a statistical approach to determin-
ing software safety integrity for pre-developed software based
on operational experience. The information included is much
less than basic course material [13], but is in our experience
insufficient to enable nonexperts to apply the methods suc-
cessfully. Also, there may be more to determining software
safety integrity in an IEC 61508-conformant system develop-
ment than purely operational reliability, which is the character-
istic assessed by the statistical methods considered.

There is consensus that statistical evaluation of operational re-
liability may be used for software which performs functions
whose failures over time can be construed as a Bernoulli pro-
cess or a Poisson process (renewal process). The mathematics
of these processes may be found in standard texts such as [13].
We restrict our comments here to these, but note that expert col-
leagues have successfully applied extensions of these methods
in an industrial context [1, 9].

To evaluate software using Bernoulli- or Poisson-process math-
ematics, it must be established that

• the failures during operation of the software constitute a
Bernoulli process, respectively a Poisson process

• the conditions for construing the failures during execu-
tion of the software as such a process are rigorously ful-
filled

• There is sufficient operational history to enable the sta-
tistical evaluation

These conditions result in documentation requirements addi-
tional to the operational history alone. Any safety case includ-
ing such an evaluation should therefore include documentation
establishing the validity of the conditions.

IEC 61508:2010 assesses the reliability of safety-function ex-
ecution in terms of probabilities of failure per hour, pfh, as
the appropriate measure for software with continuous function.
For software which operates on demand, the appropriate relia-
bility measure is probability of failure per demand, pfd.

Statistical evaluation does not provide certainty about a soft-
ware property C, e.g., its failure rate (for continuously operat-
ing systems), or its probability of failure on demand (for on-
demand systems). It provides a likelihood that the property
pertains, stated as a level of confidence or confidence level.
Typical levels of confidence are 95% and 99%, which repre-
sent an assessment that there is a more than 19-in-20, respec-
tively 99-in-100 chance that C pertains, and equally a less than
1-in-20, respectively 1-in-100, chance that C does not pertain.
If there is a (derived) safety requirement that C shall pertain,
then statistical evaluation alone is insufficient, since certainty
is not achieved. Statistical evaluation could also be used to in-
crease confidence in failure-free operation of software over an
anticipated operational lifetime, but it is hard to do so [8, 2].

Consider the number of tests N required to draw a conclusion,
at a reasonable confidence level Y, say 95% or 99%, that, on the
given distribution of inputs, the software is reliable to a pfh of
10−x or above. N is many multiples of 10x hours; and mutatis
mutandis for on-demand functions. See Tables 1 and 3. Tables
2 and 4 lay the numbers out explicitly for the SIL requirements
on safety functions1

1It should be noted that IEC 61508 makes no explicit numerical require-
ments of this sort for software. The numerical reliability requirements are for
safety functions, which cannot be implemented without some hardware, and
they concern so-called random failures. Software failures are deemed by IEC
61508 to be systematic rather than random. We do not necessarily support such
a distinction but do not discuss it further here.



Acceptable probability of failure
to perform design function < 10−x

on command
Number of observed demands

without failure for 3× 10x

a confidence level of 95%
Number of observed demands

without failure for 4.6× 10x

a confidence level of 99%

Table 1: Operational-history requirement for on-demand
functions

SIL Acceptable Observed Observed
probability demands demands
of failure for CL 95% for CL 99%

SIL 1 < 10−1 3× 101 4.6× 101

SIL 2 < 10−2 3× 102 4.6× 102

SIL 1 < 10−3 3× 103 4.6× 103

SIL 1 < 10−4 3× 104 4.6× 104

Table 2: Operational-history requirement for on-demand
functions correlated with IEC 61508 SIL requirements

Acceptable probability of failure
to perform design function < 10−x

per hour of operation
Number of observed hours
of operation without failure 3× 10x

for a confidence level of 95%
Number of observed hours
of operation without failure 4.6× 10x

for a confidence level of 99%

Table 3: Operational-history requirement for continuous
functions

SIL Acceptable Observed Observed
probability hours hours
of failure for CL 95% for CL 99%
per hour

SIL 1 < 10−5 3× 105 4.6× 105

SIL 2 < 10−6 3× 106 4.6× 106

SIL 3 < 10−7 3× 107 4.6× 107

SIL 4 < 10−8 3× 108 4.6× 108

Table 4: Operational-history requirement for continuous
functions correlated with IEC 61508 SIL requirements

2 Some Difficulties

Statistical evaluation of very-high-reliability software-based
functions remains an art at the time of writing. In order for the
conclusions of a statistical evaluation to be valid, not only must
the conditions under which the mathematics of Bernoulli, resp.
Poisson processes is valid rigorously pertain, but there must be

very high assurance in the absence of confounding factors. We
give two illustrative examples from amongst many.

First example. One requirement is that the distribution of inputs
in the intended future use of the software must be identical to
the distribution of inputs in the historical operational records.

Some software used in critical applications has a debug or
maintenance mode (DMM) which allows a user access to in-
ternal data structures in the software. Giving the software input
while in DMM results in output of interest to the maintainer,
which will rarely be values appropriate for the critical func-
tion of the software in other words, this critical function will
routinely fail when the software is in DMM. The software is
switched into DMM by a specific combination of input values
known to the developers/maintainers (henceforth maintainer),
but not necessarily by the engineer wishing to use the soft-
ware in a critical application and evaluating its use statistically
(henceforth client)2 [3].

Operational history provided by maintainer to client will usu-
ally not contain examples of operation in DMM. Suppose that
the client can ensure exactly this distribution of inputs in hisher
application, with the exception of an infrequent but not rare in-
put which is exactly the combination to send the software into
DMM. The software will fail, infrequently but not rarely, in the
new application. The statistical evaluation will not have been
an accurate guide to the future behavior3. However, the input
distribution will have been very similar to the historical distri-
bution provided for evaluation indeed identical in all but one
point! It follows that the requirement that the distribution of
past inputs in the operational history should be identical to the
distribution of inputs in the future intended use must be taken
rigorously.

A second example. Software for a moderately critical applica-
tion was being assessed for environmental dependencies. The
developer assured the assessors that the software was not at
all dependent on GPS signals: it had no function that would
require location information; no such dependency had been de-
liberately implemented; indeed, an attempt had been made ex-
plicitly to avoid it. The software did not use library or other ex-
ternal functions that were known to rely on GPS. The assessors
brought in a GPS jammer and activated it. The software soon
ceased to operate as intended because of the jamming [15, 12].

These two examples illustrate how dealing with the rigor of
the mathematical conditions for evaluation and careful analysis
to determine the absence of confounding factors are required

2How to deal effectively with the evaluation and operation of critical soft-
ware with DMM is beyond the scope of this note. It will necessarily involve
both safety and security considerations. See [5].

3Note that IEC 61508-1:2010 Clause 7.4.2.3 requires security to be con-
sidered [4]. If the information on DMM is available to a malicious agent
with access, say an insider with malicious intent, then it is easy to see how
such an agent could cause almost-continual loss of intended function, known
in computer-security terminology as denial of service (DoS). It is beyond the
scope of this note to consider such security issues.



skills for accurately evaluating software with statistical meth-
ods.

A common assessment scenario is that Client A proposes to
use a real-time version of an operating system, RTOS, to run
critical software executing, say, a SIL 3 safety function F, for
which the probability of failure per hour should be less than
10−7. A claims that RTOS has more than enough hours without
failure to satisfy the SIL 3 condition for F. In particular, F is
continuous and A has detailed logs of the order of 108 failure-
free (for F) operating hours on the software, more than required
by Table 2 above.

The validation proposed conceives of failures in RTOS opera-
tion as a Poisson process. The time to next failure is a random
variable which is exponentially distributed (that is, its probabil-
ity distribution is the exponential distribution [13][Chapter 13,
Section 2]. This satisfies the property that

For any t and s,
Prob(F fails in time interval (t, t+m) given that

it hasn’t failed up to t)
=

Prob(F fails in time interval (s, s+m) given that
it hasn’t failed up to s)4

(This property has a name - the exponential distribution is said
to be “memoryless” [11, 13]. In fact, the exponential is the only
continuous distribution which is memoryless in this sense, op.
cit.) Suppose RTOS has a failure sequence FSeq, and that T
is a time at which RTOS is well within FSeq, within a few
microseconds, say s, of inevitable failure. Then

Prob(F fails in time interval (T, T+s) given that
it hash’t failed up to T) = 1

Consider now the operation of RTOS within the same few mi-
croseconds s of boot-up. RTOS is very unlikely to fail, because
failure within s of boot-up would have caused it to be unusable.

Prob(F fails in time interval (0, 0+s)) = approx. 0

(Since the process is started at time 0, and it cannot fail before
it is started, this probability is unconditional.) The memoryless
property of the time to next failure is prima facie not fulfilled.
This means that its distribution cannot be the exponential dis-
tribution and thus that the overall failure process is not prima
facie a Poisson process5.

4These probabilities are technically speaking conditional probabilities:
Prob(F fails in time interval (t, t+m) given that it hasn’t failed up to t) is usu-
ally written Prob(F fails in time interval (t, t+m) | F hasn’t failed up to t) and
this is defined equal to Prob(F fails in time interval (t, t+m))÷ Prob (F hasn’t
failed up to t)

5We are aware that any simple counterexample such as this likely can be
plausibly finessed somehow, but there are deeper characteristics that need to be
considered to construe the failure behaviour as a Poisson process. This simple
counterexample is not the end of the story.

A plausible construal of RTOS execution as a memoryless pro-
cess is that one run of the process is defined by the boot-up of
the RTOS and concluded with its shut-down. In that case, it
is plausible that whether the RTOS succeeds or “fails” (how-
ever this might be defined for an entire boot-up–shutdown se-
quence) is statistically independent of whether the previous
boot-up–shutdown sequence succeeded or failed. The statis-
tical process would be discrete, a Bernoulli process rather than
a Poisson process. To evaluate this Bernoulli process, all input
to the RTOS from boot-up to shutdown must have been logged,
and that sequence of consolidated inputs constitutes one math-
ematical input i to the single run of the Bernoulli process. That
will usually be a very large amount of time-stamped data.

The distribution of that input data must be determined. If the
history of RTOS is like the history of most OSs of the au-
thor’s acquaintance, it is very unlikely that an exact sequence
of inputs from boot-up to shut-down, as well as the relative-
timing relations for time-dependent functions, will have oc-
curred more than once. That means each mathematical input
value as defined above has occurred precisely once. Thus the
distribution will be a subset of the entire possible input space.
It is also combinatorially infeasible for all possible inputs to the
RTOS to have been observed: the subset will be sparse. (Rel-
ative timing of various inputs will be important. We omit this
consideration here.)

The numbers for the Bernoulli process are valid only for the
case in which the proposed future use of the RTOS has an
identical input distribution to that cited in the operational his-
tory from which the numbers are derived. That is, exactly this
sparse subset of all possible inputs must occur in the future.
Quite how this could validly be demonstrated in any practical
case remains a mystery to us - given the combinatorics it seems
implausible.

We conclude that establishing the reliability of RTOS prac-
tically using the Bernoulli/Poisson mathematics in this man-
ner looks close to infeasible. Yet Annex D currently states in
its second sentence “This approach is considered particularly
appropriate as part of the qualification of operating systems,
[etc.]” !

A nice twist was recently recounted by Bernd Sieker [14],
who observed that some portion of the working memory of the
Linux kernel is not initialised on boot-up, in order to serve as a
seed to the random-number generator (RNG). There is a story
that someone once observed that some part of memory was not
initialised, and wrote code to zero it out. The RNG stopped
working effectively and thereby also certain important kernel
functions. The seed must be there. Since the (correct) OS
thereby does not start from a defined initial state, a run from
boot-up to shut-down cannot count as a run of a renewal pro-
cess, since there is memory (both literally and figuratively) left
over from a previous run. The mathematics of Poisson pro-
cesses are prima facie inapplicable. (There are plausible ways
of fixing this quandary which we do not consider here.)



3 Assessing Failure-Freeness

Suppose one has observed N invocations of an on-demand
function without failure. One wants to know with a certain
degree of confidence that the probability of failure, (1 − p) of
the function is sufficiently small, according, say, to the speci-
fication of the SIL level. Alternatively, that the probability of
success of the function, p, is sufficiently large. The question
is statistical: one has a certain series of observations, one has
established for certain that one is observing a Bernoulli pro-
cess in the failure behaviour and one wants to know what the
likelihoods are that one is observing such a process with a sat-
isfactory value of p. Similar considerations apply to continu-
ous functions whose failure behaviour forms a Poisson process.
The mathematics is given in [9].

In order for the mathematics of Bernoulli and Poisson pro-
cesses to be applied, real failures must be considered, not just
those failures which might have been observed. Thus

• There must be perfect failure detection: all failures of
the software must be (have been) observed and recorded
(this requirements has been noted above)

• In particular, failures may be masked by other failure
phenomena. These masked failures must also somehow
be observed and recorded6

Some assumptions that lead to the appropriate characterisation
of the statistical behavior of software malfunction as a Poisson
process are

1. That the behavior of the SW on a given input E is depen-
dent only on the value E and not on the internal state of
the SW at the time E is input

2. That the likelihood of a malfunction remains constant
over time

These amount to plausible approximations of the mathematical
memoryless condition. Condition 1 may prompt an observa-
tion that relatively little safety-related software, if any, fulfils it
literally.

However, internal state is often used to record some history
of inputs in order to determine a change which is significant
for the function of the software, and in many cases a trans-
formation may be effected to render the function memoryless.
For example, a temperature-rise-control function TC monitors
temperature and, if a temperature rises too fast, executes a mit-
igation. TC determines that the temperature is rising too fast
through comparing a sequence of timestamped temperatures,
delivered in suitably timely fashion. Internal state (memory) is

6A discussion of failure masking and resolution is beyond the scope of this
note.

used in TC to record the sequence of temperatures and times for
determination of the temperature profile. TC does not literally
fulfil Condition 1; indeed internal state is used essentially. Its
behavior, however, is essentially memoryless, as follows. Fac-
tor the function which TC performs into two. The first function
DT aggregates temperature over time, and determines the rise
in temperature over discrete time periods: it is a discrete ap-
proximation to the first time derivative of temperature. When
this value exceeds a threshold, it signals a protection/mitigation
process Prot to start. Prot is literally memoryless and embodies
a Bernoulli process. TC consists of the pipeline (DT >> Prot)
and the Bernoulli-process assumptions and mathematics apply
because Prot embodies literally a Bernoulli process (resp. a
Poisson process if considered over time rather than through
demand-invocations).

Other examples of such effectively memoryless processes are
some protection systems in nuclear power plants. Such a sys-
tem starts from a given initial state and reacts to parameters
over a short time period, in order to execute its protection func-
tion. The time period over which input is aggregated is shorter
than the time period between invocations of the software, and
the software is reset to the initial state after execution of its
function. Different invocations of this function, and thereby
failure or success per invocation, are independent in the appro-
priate sense for Condition 1. Furthermore, there is some con-
stant probability of failure, dependent on the exact sequence of
inputs per invocation and the distribution of those inputs.

Generalising, software which implements on-demand func-
tions and which is returned to a defined initial state (reini-
tialised) after each invocation, such as protection functions, of-
ten fulfil the above conditions. There are specific verification
conditions which must be assured: that such SW starts each
time in a pre-defined initial state must be proven (if it is always
the case), or alternatively it must be recognised without excep-
tion when the SW is not in the initial state, and such exceptional
invocations omitted from the statistics and the statistical evalu-
ation of the software.

Another class of functions which fulfil the general conditions
are cyclic functions: software functions which are reinitialised
at predetermined times or at other points (say, dependent on in-
ternal state). The sequence of inputs from an initial state up to
the point at which the software is reinitialised form one mathe-
matical input, namely a sequence. Detailed reasoning is given
in [6].

This short discussion should suffice to indicate that the restric-
tion imposed by the condition of memorylessness is not as se-
vere as it first appears. It does, however require a degree of
experience to assess practical software execution as appropri-
ately memoryless.



4 Summary of Evaluation Conditions Dis-
cussed Above

• The failure behaviour during operation of the software
must be shown to constitute a Bernoulli process, respec-
tively a Poisson process

• The conditions under which the mathematics of
Bernoulli, resp. Poisson processes is valid must rigor-
ously pertain: in particular

– the distribution of inputs in the operational history
must be identical to the distribution in the intended
further use

∗ in particular, the operational conditions under
which the statistical data has been gathered
must be statistically identical to those in oper-
ation, and both have to be statistically identical
to the future intended operational use

– That such SW starts each time in a pre-defined ini-
tial state must be shown (if it is always the case),
or

– Alternatively, it must be recognised without excep-
tion when the SW is not in the initial state, and such
exceptional invocations omitted from the statistics
and the statistical evaluation of the software

– The time to next failure of the real program, as bi-
nary machine code running on electronic hardware,
must be shown to be exponentially distributed,
equivalently to fulfil the memoryless property; that
is:

∗ At any point in time, the time to next failure
must be independent of the previous history of
the execution of the program

• There must be perfect failure detection: all failures of the
software must be/have been observed and recorded

• In particular, failures may be masked by other failure
phenomena. These masked failures must also be/have
been observed and recorded

• There must be very high assurance in the absence of con-
founding factors, such as unremarked environmental pa-
rameters, in the operational-history logs
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